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In this paper, a method to constructively enumerate fusenes and benzenoids with
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1. Introduction

A fusene is a conjugated molecule composed of mutually condensed six-
membered rings [1]. Fusenes are divided into benzenoid and helicenoid systems.

In the mathematical abstraction, a fusene is a simple planar 2-connected
graph embedded in the plane with all the vertices of degree 2 or 3, all bounded
faces hexagons and all vertices not in the boundary of the outer face of degree
3. In this language benzenoids are fusenes that are isomorphic to subgraphs of
the hexagonal lattice, whereas helicenoids are fusenes that are not subgraphs of
the hexagonal lattice.

For an introduction into the mathematical and chemical properties of these
structures see [2] or [3].

Due to their importance there is a long history of algorithms for enumer-
ating benzenoids and fusenes, see e.g. [1,4-20].
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All the algorithms in these articles are of a constructive nature, that is: they
do not only determine the number of structures, but they are also able to output
one element of every isomorphism class (except for [20] where isomorphic struc-
tures are constructed and only the numbers of nonisomorphic ones are deter-
mined). In [21] a nonconstructive method to determine the numbers of isomers is
given. On one hand this has the advantage of being able to compute the numbers
of benzenoids for numbers of hexagons that are far out of reach for constructive
enumeration methods, since for these algorithms the number of structures induce
trivial lower bounds on the number of computer cycles needed to generate them
— at least when one applies a more practically oriented definition of when one
considers a structure to be constructed. But on the other hand, nonconstructive
methods do not give the structures, so they do e.g. not allow to determine the
energetically best structure or search for structures with certain properties. So for
large numbers of hexagons it is a vicious circle: constructive enumeration is neces-
sary in order to be able to examine the structures, but the constructiveness makes
it impossible to generate all structures. In the case of fusenes the constructive gen-
eration is indeed very fast, but running tests on the structures — even very simple
ones that need only linear time — is already much too time consuming for e.g. 26
hexagons. The only way out is to restrict the class under consideration in a way
that all interesting structures are still contained. This is a challenge on the chem-
ical side (which restrictions do not delete interesting structures) as well as on the
mathematical side (restrictions are sometimes very hard to include in an efficient
way — in some very difficult cases there are even no better methods known than
constructing and filtering all structures .. .).

As well known in the theory of benzenoid hydrocarbons [3, 22-25], benze-
noid hydrocarbons are chemically stable only if their molecular graphs have per-
fect matchings (or, in the language of chemistry: if they have Kekulé structures,
i.e., if they are Kekuléan).

One should note that the existence of perfect matchings is a necessary,
but not a sufficient condition for chemical stability. The fact is that there exist
highly unstable Kekuléan benzenoids [24,26], but there do not exist stable non-
Kekuléan species.

Anyway, the nonexistence of perfect matchings seems to be a reasonable
criterion to avoid the computer-generation of the respective structures. In this
article we will therefore describe how to efficiently generate benzenoids and
fusenes with perfect matchings. We will do this by including the restriction in an
early step of the generation algorithm described in [7]. The results of our com-
putations are given in tables 1 and 2.

In order to understand this approach it is not necessary to know all the
details of the algorithm in [7] — especially not the methods used for isomorphism
rejection and the details of restricting the generation to benzenoids (which is
done by a filter) — nevertheless it is necessary to know the basic construction
principles, which we will describe now.
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2.  The algorithm

The following basic concepts and results were already given in [7], but are
essential for understanding the new concepts presented here, that we will repeat
them: The inner dual of a graph embedded in the plane is its dual graph with
the vertex corresponding to the unbounded region removed. So it is a subgraph
of the dual graph. While there is a one-to-one correspondence between embed-
ded graphs and their duals, this is not the case for inner duals as can be seen in
figure 1.

The inner duals of fusenes (which will be called id-fusenes in the remainder
of this paper) are simple graphs. This can be shown directly, but is also a conse-
quence of the results about boundary lengths in [27] and for a more general case
in [28].

A labelled embedded graph is an embedded graph together with a map
from the set of all angles (that is pairs (e, ¢’) with ¢’ following e in the cyclic
order of edges around their common start vertex) into the set of natural num-
bers. Two labelled embedded graphs are isomorphic if there is an isomor-
phism of the embedded graphs with the property that all angles are mapped
onto angles with the same labels. The labelled inner dual of a planar graph
is obtained by labelling every angle with the number of edges in the cyclic
order of the dual graph between e and e’. Since the edges counted are in
the dual, not the inner dual, the endpoints of edges that lie between two
edges following each other in the rotational order of the inner dual, is the
vertex corresponding to the unbounded face. If the graph has no bridges, so
that the dual has no loops (especially no loops at the vertex corresponding
to the outer face), we can reconstruct the dual of the planar graph from its
labelled inner dual and the graph from its dual. So there is a one-to-one corre-
spondence between bridgeless planar graphs and their labelled inner duals and
two such graphs are isomorphic if and only if their labelled inner duals are
(figure 2).

The approach described in [7] is in two steps: first all inner duals are con-
structed and then they are labelled in order to obtain fusenes. It is important for
the approach presented here, that the number of fusenes is much bigger than the
number of inner duals, e.g. by a factor of 70 for 13 hexagons, 850 for 20 hexa-
gons and more than 7000 for 26 hexagons. This makes it efficient to still con-
struct all inner duals and first filter them for those that cannot lead to fusenes
with a perfect matching. A first easy lemma says:

inner dual: e——e——e fusenes: CCO Céj

Figure 1. Two fusenes with the same inner dual.
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fusenes: Oi:@ Oigj
duals: @ @

labelled 5 2 S > 15
inner duals: ) 3

Figure 2. Two fusenes, their duals and labelled inner duals.

Lemma 1. The number n of vertices of a fusene F is determined by its inner dual
G = (V,E). It is given by n =5|V| — |E| + 1

Proof. First note that as a consequence of the Euler formula the number of
bounded triangles in G is t = |E| —|V|+ 1. Since every vertex in G gives rise to
a hexagon in F, the |V| vertices in G give rise to 6|V vertices in F. For every
edge in G we have counted the endvertices of the corresponding edge in F twice,
so we have to subtract 2|E| with the result that vertices corresponding to a trian-
gle in G have been counted 3 times and subtracted 3 times — so once too often.
Summing this up we have

n=6V|—2|E|+t=6V|—2|E|+|E|—|V|+1=5|V|—|E|+1

O

Since fusenes have to have an even number of vertices in order to have a
perfect matching, this gives:

Corollary 1. A fusene F with inner dual G = (V, E) does not have a perfect
matching if |V| + |E| is even.

This is a first and very efficiently computable criterium. Due to this cri-
terium about 50% of the inner duals do not have corresponding fusenes with
perfect matchings. So these inner duals can be rejected at once — leading to a
speedup of 50%.

The remaining inner duals may or may not have labellings that lead to
fusenes with perfect matchings. So the next step is to label the remaining inner
duals in a way that the represented fusene has a perfect matching.
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We refer the reader to [29] for details of the algorithm and the implemen-
tation. Here we will only give the basic idea of the algorithm and give some of
the definitions in an a bit less formal way.

Fusenes are bipartite graphs and we always assume them to come with a
two-colouring of the vertices (e.g. black and white) in a way that we never have
two neighbouring vertices of the same colour. In the following we will repeatedly
use the fact that in any matching you have an equal number of black and white
saturated vertices.

Definition 1. Given an inner dual D of a fusene.

If v is a vertex in D, then comp(v) denotes the number of angles centered
at v that bound the outer face.

A block of D is either a 2-edge-connected component of D, a vertex with
degree 1 or a vertex v with comp(v) = 3. A fuseneblock is the part of the
fusene that is induced by faces corresponding to vertices in a block of the inner

Table 1
Numbers of fusenes and Kekuléan fusenes with up to 26 hexagons.

h N Niek Niele (i %)
1 1 1 100.00
2 1 1 100.00
3 3 2 66.67
4 7 6 85.71
5 2 15 68.18
6 82 52 63.41
7 339 195 57.52
8 1505 807 53.62
9 7036 3513 49.93

10 33836 16025 47.36

11 166246 74848 45.02

12 829987 357602 43.09

13 4197273 1735566 41.35

14 21456444 8541951 39.81

15 110716585 42527067 38.41

16 576027737 213896060 37.13

17 3018986040 1085427249 35.95

18 15927330105 5552000102 34.86

19 84530870455 28600840970 33.83

20 451069339063 148280602424 32.87

21 2418927725532 773212222611 31.97

22 13030938290472 4053143014625 31.10

23 70492771581350 21348243725029 30.28

24 382816374644336 112936065636503 29.50

25 2086362209298079 599856634347474 28.75

26 11408580755666756 3197927731635661 28.03
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Table 2
Numbers of benzenoids and Kekuléan benzenoids with up to 26 hexagons.
h N Niek Nicke (i %)
1 1 1 100.00
2 1 1 100.00
3 3 2 66.67
4 7 6 85.71
5 22 15 68.18
6 81 51 62.96
7 331 190 57.40
8 1435 764 53.24
9 6505 3223 49.55
10 30086 14107 46.89
11 141229 62879 44.52
12 669584 284918 42.55
13 3198256 1304861 40.80
14 15367577 6031642 39.25
15 74207910 28082553 37.84
16 359863778 131573247 36.56
17 1751594643 619709418 35.38
18 8553649747 2932365897 34.28
19 41892642772 13931375631 33.25
20 205714411986 66422242556 32.29
21 1012565172403 317686257281 31.37
22 4994807695197 1523706173918 30.51
23 24687124900540 7326457682724 29.68
24 122238208783203 35307572182970 28.88
25 606269126076178 170501460668281 28.12
26 3011552839015720 824884145306863 27.39

dual. If B is a fuseneblock and M a matching, Mp denotes the set of edges that
belong to M and B - so it is a matching of B. Note that even if M is a perfect
matching, Mp need not be a perfect matching of B.

The components induced by vertices in the inner dual that are not con-
tained in blocks can easily be seen to be paths. They are called connection paths
and the corresponding subgraph of the fusene is called a hexagonpath. Again we
write My for the edges of a matching M contained in a hexagonpath H.

A connection edge in an inner dual is an edge incident with a block, but not
contained in it. A connection edge in a fusene is an edge that is contained in two
different fuseneblocks or a fuseneblock and a hexagonpath (that is the dual of a
connection edge in an inner dual).

The decomposition graph of a fusene is defined as follows: the set of verti-
ces consists of all fuseneblocks and hexagonpaths and two vertices are adjacent
if and only if the corresponding subgraphs of the fusene share an edge — which
is by definition a connection edge. It is easy to see that the decomposition graph
is a tree.
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The blocks of an inner dual can be determined in linear time. For details
see [29].

For every block the structure of the corresponding fuseneblock is uniquely
determined — so also all possible parts of matchings that lie completely inside
that part are already determined by the structure of the block. If the inner dual
is 2-connected — so the whole inner dual is one big block, then there is one
unique way how it must be labelled and the existence of a perfect matching is
already determined by the inner dual. So in this case it all boils down to filter-
ing (but note that — as mentioned in the introduction — in average there is a large
and growing number of fusenes per inner dual).

Now assume that all angles belonging to vertices of blocks are already
labelled. That means that though we do not know the whole structure of the fu-
sene, we know at least the structure of the fuseneblocks and which are the con-
nection edges — that is: edges they share with the rest of the fusene. Examples
of blocks, fuseneblocks and connection edges are given in figure 3. A matching
of the vertices of the fuseneblock or hexagon path can have the structures given
in figure 4 on a connection edge. The structures denoted by D and D’ can be
dealt with together (and denoted by D) since whenever we have a matching that
results in D we can just extend it to a matching that results in D’ and the other
way around: by removing an edge, D’ can be reduced to form D. All the other
types cannot be transformed into each other without affecting the interior verti-
ces of the fuseneblock. If two fuseneblocks or a fuseneblock and a hexagon path
share a connection edge, the type of the edge is interpreted differently depending
on which part it is considered to be a subset of.

We will call a matching of a hexagonpath or fuseneblock semiperfect if it
saturates (at least) all vertices not on connection edges.

Bresef] Brd

Figure 3. Blocks, fuseneblocks and connection edges.

23227

Figure 4. The possible configurations of saturation on the connection edges. The fuseneblock or
hexagonpath is assumed to be on the left hand side in this picture.
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Note 1. Given a fusene with a perfect matching. If a connection edge is of type
x when interpreted as part of one of the parts containing it and of type y when
interpreted as part of the other, then the possibilities for (x,y) are (independent of
order) (R, L), (D, D) or (D, S).

This can be seen by just inspecting the cases.
Defining the type AD (standing for any double) for any of type D or S will
simplify notation in the following lemmas and proofs:

Lemma 2. Given a fusene F, a perfect matching M of F, a fuseneblock B and a
connection edge e € B.

(i): If e has type AD in Mp, then e has a type AD in My for every perfect
matching M" of F.

(ii): If e has type t € {L, R} in Mp, then e has the same type t in My for
every perfect matching M’ of F.

Proof. When looking at connection edges in fuseneblocks that are leafs of the
decomposition tree (so fuseneblocks with just one connection edge) (i) and (ii)
follow from counting the number of black and white vertices, which must be
equal in case (i) and differ by one in case (ii), where the vertex from the smaller
colour class must always be the saturated one. This restricts the possible struc-
tures of semiperfect matchings enough to prove (i) and (ii).

Now we can continue iteratively by always choosing an edge in a fusene-
block or hexagonpath that is a leaf of the subtree obtained when removing all
the vertices of the decomposition tree that have already been considered. In such
a component the types of all but at most one connection edge have already been
proven to be determined by the lemma, so the same arguments can be used as
for the case of a single connection edge. O

So let us now study how the types of the connection edges of hexagonpaths
depend on the labels of the corresponding vertices in the inner dual. A labelsum
of a connection path is the sum of all labels on one of the sides of the path. A
connection path has two labelsums, but note that one is even (odd) if and only
if the other is. The labelsum can also be interpreted as the number of edges in
a path in the boundary of the corresponding hexagonpath that starts and ends
in a vertex of a connection edge but doesn’t contain one.

Lemma 3. (i): For every hexagonpath and types x,y € {L, R} of the two connec-
tion edges e, e’ some semiperfect matching exists that has the given types on the
connection edges, if and only if the labelsum has a parity as in the following table:
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first type second type L second type R

L even odd
R odd even

(i1): If the types of the connection edges are AD and D or both AD, there
always exists a semiperfect matching with the given types on the con-
nection edges — no matter what the labels or labelsums are.

(1ii): If the given types of the connection edges are both D, there exists a
semiperfect matching with the given types on the connecting edges if and
only if one of the labels of the angles of the connecting path is odd.

We do not consider the case of type S given for a connection edge of a hex-
agonpath, because in the remainder we won’t need that case.

Proof. Note that an even/odd labelsum means that there is a path of even/odd
length between the right vertex of one connection edge and the left of the other
— and this again means that the right vertex has the same, resp. a different colour
than the left vertex of the other.

First assume that a semiperfect matching is given. If case (i) applies and the
first edge has only a white vertex saturated, the other edge has only a black ver-
tex saturated. So in case the vertex is a left vertex (type L) and the labelsum is
even, then the right vertex of the other edge has the same colour as the saturated
vertex — so the other edge must have type L too. The other cases follow in the
same way.

The existence of a semiperfect matching under the given conditions follows
easily: all vertices are in one of the boundary paths of the hexagonpath for which
the labelsum can be formed. So assume e.g. that the type of connection edge ¢
is L and that of ¢, is R and the labelsum is odd. Then take the boundary path
e1, e, ...,e, from the left vertex of ¢ to the right one of ¢; and choose every
edge with an odd index for the matching. Since the path has an odd length,
all vertices on the path are saturated. Then take the path e, e, ..., e, from
the right vertex of ¢ to the left one of ¢, and choose every edge with an even
index for the matching. Since the path has an odd length, all vertices on the path
except the first and last are saturated, so we have a semiperfect matching of the
given type. The other cases can be dealt with analogously.

Part (i) follows immediately: since the boundary cycle ey, es, ..., e of a
hexagonpath has even length, the edges with even index and the edges with odd
index both form a perfect matching. If one edge is of type D, we can choose the
matching containing that one, otherwise we can choose an arbitrary one.
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Part (iii) can be proven using part (ii): For the case of just one hexagon we
can check it directly. Now assume that you have more than one hexagon. Split
the path into two nonempty paths P;, P, with the edge along which it is cut the
new connection edge of the parts. Assume the odd label is in part P;. Then by
induction there exists a semiperfect matching of P; with type D on both con-
nection edges. But now any matching of P, with type AD on the new connection
edge and D on the old can be used to construct the matching we were searching
for. O

Now the basic strategy to proceed is obvious: Given an inner dual, we
first compute the blocks and connection paths and label the angles belonging to
block-vertices. Then for the blocks the semiperfect matchings are computed. If
the block B has n connection edges cy, ..., ¢,, all possible n-tuples (71, ..., T,)
are computed so that there exists a semiperfect matching of B where ¢; has type
T; for 1 <i <n. We call these the type vectors.

Figures 5 and 6 give an example. The components A,B,C are identical and
since they have only six black vertices and seven white ones, it is immediate that
— if at all — they can only have a semiperfect matching leaving the white vertex
of the connection edge ¢; unmatched. It is easy to check that such a matching
indeed exists, so the only possible type vector is (R). For the component D we
have several possible combinations of types for the connection edges c1, ¢z, c3 as
given in the figure.

Then we compute all combinations of type vectors that can be combined in
a way that the connection paths can be labelled in a way that semiperfect ma-

Figure 5. An example of a partially labelled inner dual.

AB.C D
(R,R,L)
o ¢, (RL,R)
[R) (L.L,L)
- (D,L.E)

Figure 6. The type vectors of the blocks in figure 5.
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things of the paths exist that can extend semiperfect matchings of the blocks to
form a perfect matching of the fusene: Given two blocks connected by a connec-
tion path. If the connection path is empty, the types (independent of order) of
the connection edge interpreted from the two blocks must be {L, R} or {D, S} or
{D, D}. For a nonempty connection path the types of the two connection edges
of the blocks must be {L, L}, {L, R}, {R, R}, {D, S}, {D, D} or {S, S}.

Let us write o for odd labelsum, e for even labelsum, ¢ for must contain odd
label and a for all labels possible. If we have connection paths Py, ..., P,, we can
now compute all labelling vectors (L1, ..., L,), with each L; € {o, ¢, ¢, a} telling
us which combinations of labellings of the angles of the connection paths lead to
Kekuléan structures. The value of L; describes how P; must be labelled. Then we
can just do the labelling according to these rules and are guaranteed to produce
on one hand only Kekuléan fusenes or benzenoids but on the other hand we are
guaranteed to generate them all.

In the example the types (R) for blocks A, B, C and (R, R, L) for block D
gives the labelling type (e, e, 0) — the first and second connection path must be
labelled with an even label sum and the third with an odd one. So we can start
to label the first path in an arbitrary way — just choosing the last label in a way
to make sure the sum is odd. For each labelling of the first path we can label
the second path in an arbitrary way — except for the last vertex, etc. All possible
labelling types for the example are (e, e, 0), (e, 0, ¢) and (o, 0, 0).

While the program our algorithm is based upon takes care of isomorphisms
between fusenes with different labels, it would not detect the fact that the same
labelling is produced twice. So our algorithm has to make sure that this does
not happen. But if we had e.g. labelling possibilities (e, e,a) and (e, e, c), all
labellings generated for (e, e, c¢) would be repeated when labelling according to
the rule (e, e,a). But as we will see, the problem with ¢ and ¢ is the only
one.

Lemma 4. Given an inner dual of a fusene with connections paths Py, ..., P,.
Then for every 1 < i < n the labelling type of P; is either in {e,o}
for every labelling of the blockvertices and every possible labelling vector or in
{a, c} for every labelling of the blockvertices and every possible labelling vec-
tor.

Proof. This result can be proven analogously to Lemma 2.: for connections
paths neighbouring a leaf of the decomposition tree it follows immediately, since
the number of vertices of the block that is a leaf is either even (then the type
must be in {a,c}) or odd (then the type must be in {e, 0}). This also implies
whether an even or odd number of the vertices on connection edges must be
saturated from inside the path. Now we can remove the leafs of the decompo-
sition tree together with their neighbours. For the new leafs there is at most one
connection edge for which the parity of the number of vertices that would be
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matched from outside by a perfect matching is not yet determined. So again an
easy parity argument gives us the result for the connection path starting at this
edge. O

Now assume that for two different labelling vectors (L, ..., Ly), (L}, ...,
L)), the same labelling of the inner dual is produced. If the two vectors differ
in L;, then obviously L; cannot be in {e, o}, since labellings of these types are

always different. So we must have L; = a and L. = c. To solve this prob-
lem we replace every labelling vector with L; = a by two labelling vectors —
once with L; = ¢ and once with L; = ¢ which is a new type saying that only

even labels (this means: only label 2) may be used. After this replacing (and
removing doubles obtained this way), no two labelling vectors produce the same
labelling.

Of course the given description is just a simplified sketch. Some of the
more technical details used to speed up the computation are not mentioned
here. It is e.g. obvious that in some cases not all type vectors have to be com-
puted. In the example we would first determine the type vector for the leafs of
the decomposition tree. So when computing the type vector for D we already
know that component A has type (R), then connection edge ¢; of component
D must have type L or R — so it is of no use to compute type vectors with
D or E for edge ¢; (and analogously for the other components). If a block
with just one connection edge has type D on this edge (which is e.g. the often
occuring case that it is a degree one vertex), the angles of the path can be
labelled arbitrarily and this block and the connection path connecting it with
the rest can simply be removed before computing the type vectors and com-
binations. In fact small blocks (like one vertex of degree one or three, three
vertices, etc.) occur much more often than big ones — so for them one can
simply precompute the type vectors instead of recomputing them again and
again.

For details on the optimizations actually used in the program, see [29].

3.  Testing

One of the most important tasks when implementing algorithms is to also
develop testing routines. Each nontrivial algorithm bears the danger of numerous
implementation errors — even when the implementation is done very carefully.
Since the basic algorithm had been tested against various earlier results, it can be
regarded as well tested and we only had to test the restriction to structures with
perfect matchings. To this end we also implemented a very simple filter using
Berge’s path extension method. Using this filter we independently checked the
numbers of benzenoids and fusenes with up to 21 hexagons. For more than 21
hexagons a complete check was not possible due to the large time consumption
of this approach, so in order to increase the chance to detect possible errors that
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can first occur for larger numbers of hexagons, we tested the operation only for
certain (more or less) random parts of the set of all inner duals of fusenes/benz-
enoids with 22-30 hexagons. In all cases tested we had complete agreement of
the results.

4. Results

The source code of the C-program based on this algorithm can be obtained
from any of the authors. It can also compute some statistics about the struc-
tures generated (e.g. the numbers of structures grouped with respect to the auto-
morphism group, the corresponding chemical formula or the combination of
both).

Of course the ratio of Kekuléan structures among all structures does not
only depend on the number of hexagons, but also on the chemical formula. If
the formula is C;H, and x is odd, then all benzenoids and fusenes are obviously
non-Kekuléan. If on the other hand the chemical formula is C;H, with y =
x/2 + 3 then the structures are catacondensed and all vertices are in the bound-
ary of even length — so all of them are Kekuléan. For & hexagons this is the case
with x = 4h + 2. The smallest possible number of atoms for a given number of
hexagons is 2k + 1 + [+/12h — 3]. This cannot as easily be determined as the
largest one, so we refer the reader to [27] for a proof. In [28,30] an independent
and more general proof and more general formulas are given that allow besides
purely hexagonal structures also structures with up to six pentagons. One might
expect that formulas that correspond to the most pericondensed structures — that
is structures with the smallest possible number of atoms for a given number of
hexagons — have the smallest ratio of Kekuléan structures among those with an
even number of vertices, but as the following tables show this is at least for these
small numbers of hexagons not the case. Using the number of C-atoms to mea-
sure the distance, the formula for which the minimum ratio of Kekuléan struc-
tures is obtained even seems to be closer to the catacondensed case (where we
have the maximum number of C-atoms and provably a ratio of 100% Kekuléan
structures) than to the formula with the minimum number of atoms. Example
statistics for the numbers of Kekuléan and non-Kekuléan structures for 24 hexa-
gons and all possible chemical formulas are given in tables 4 and 4. For other
vertex numbers the tables can be obtained from any of the authors. It would be
interesting to know for which formula with an even number of C-atoms the ratio
is below 50% for the first time — if such a formula exists.

In the following tables N stands for the numbers of benzenoid or fusene
isomers and Njex for the number of all Kekuléan benzenoid or fusene isomers.
In tables 4 and 4 we only list formulas with an even number of C-atoms, because
for the other formulas the number of Kekuléan structures is of course 0. Sum
stands for the sum of the above numbers — that is all, resp. all Kekuléan benze-
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Table 3
Chemical formulas for fusenes with 24 hexagons.

Isomer N Niek % in %
CgsHoo 1 1 100.00
CgsHoo 789 503 63.75
Cy0Hog 34324 21533 62.73
C7Hog 648833 405106 62.44
Cy4Hog 8716742 5357926 61.47
Cy6Hj3p 96903418 58148416 60.01
C7sHs3p 928636403 542511324 58.42
CgoHszg 7694135780 4379676357 56.92
CgrHsg 55001434461 30550285983 55.54
CgqHsg 334388076753 181856671720 54.38
CgeHyo 1693160752488 905906495329 53.50
CgsHyo 6918072102201 3666866010067 53.00
CgooHyq 21702739655309 11521055373464 53.09
CgoHyg 48377948880959 26171976233456 54.10
Cog4Hyg 65964838261853 37725883455683 57.19
CosHs 41010359983640 27086116956577 66.05
CogHso 5640868033058 5640868033058 100.00

Sum 191706106257012 112936065636503 58.91
Total 382816374644336 112936065636503 29.50
Chemical formulas for benzenoids with 24 hexagons.

Isomer N Niek % in %
Ce6Hao 1 1 100.00
CgsHoo 789 503 63.75
Cy0Ho4 34324 21533 62.73
C7Hog 643859 401936 62.43
Cy4Hog 8341018 5127143 61.47
Cr6H3o 86809987 52093183 60.01
C7sHs3p 762002033 444923847 58.39
CgoHzg 5696736534 3238185434 56.84
CgrHsg 36317312851 20129384006 55.43
CgqHsg 195126389101 105852666208 54.25
CgsHyo 867366149134 462897519666 53.37
CggHyo 3096731853207 1638063669232 52.90
CooHyq 8477771216467 4494079237785 53.01
CgoHyg 16519224289831 8926908845540 54.04
Cog4Hyg 19872186264006 11318393656829 56.96
CosHs 10871927816586 7119266659018 65.48
CogHso 1218239791106 1218239791106 100.00

Sum 61161445650834 35307572182970 57.73
Total 122238208783203 35307572182970 28.88
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noids or fusenes with an even number of C-atoms. Total also takes isomers with
an odd number of C-atoms into account.

5.  Conclusions

We gave a first approach to restrict the generation of fusenes and benze-
noids to a subset that has a higher probability to occur in nature. Though the
numbers are considerably smaller than for all structures, there are still way too
many of them to perform time consuming tests or generate structures for a larger
number of hexagons. Now the chemists are asked to develop more restrictive cri-
teria that can be included in the generation process in order to further reduce the
number of structures.

A modification of this approach might be used to also determine the num-
ber of different Kekulé structures of the fusenes and benzenoids generated or
generate only those with at least some given number of Kekulé structures.

An interesting question proposed by the results from this article is what the
asymptotic ratio of Kekuléan fusenes or benzenoids among all such structures is.
The numbers of hexagons that can be dealt with by constructive methods are too
small to suggest well based conjectures.

In this context it would also be interesting to investigate which formulas
(with an even number of vertices) minimize the ratio of Kekuléan structures for
a given number of hexagons.
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